Directions: Show work for all problems.

1) A mixture of nitrogen and neon gases contains equal moles of each gas and has a total mass of 10.0 g . What is the density of this gas mixture at 500 K and 15.0 atm ? Assume ideal gas behavior. $8.8 \mathrm{~g} / \mathrm{L}$
2) What is height (in mm) of a column of ethanol if the pressure at the base of the column is 1.50 atm ? (The density of Hg is $13.534 \mathrm{~g} / \mathrm{cm}^{3}$ and ethanol is $\left.0.789 \mathrm{~g} / \mathrm{cm}^{3}.\right) \underline{19,555 \mathrm{mmC}_{2} \mathrm{H}_{5} \mathrm{OH}}$
3) 1.0 L of liquid nitrogen is kept in a closet measuring 1.0 m by 1.0 m by 2.0 m . Assuming the container is completely full, and the temperature is $25.0^{\circ} \mathrm{C}$, and the atmospheric pressure is 1.0 atm , calculate the percent (by volume) of air that would be displaced if all the liquid nitrogen evaporated. (Liquid nitrogen has a density of $0.807 \mathrm{~g} / \mathrm{mL}$.) 35.2%
4) A humidifier is used in a bedroom kept at $22.0^{\circ} \mathrm{C}$. The bedroom's volume is $4.0 \times 10^{4} \mathrm{~L}$. Assume that the air is originally dry and no moisture leaves the room while the humidifier is operating.
a. If the humidifier has a capacity of 3.00 gallons of $\mathrm{H}_{2} \mathrm{O}$, will there be enough to saturate the room with water vapor (Vp of $\mathrm{H}_{2} \mathrm{O}$ at $22 .{ }^{\circ} \mathrm{C}=19.83 \mathrm{mmHg}$)? yes, prove it
b. What is $P_{\text {final }}$ of water vapor in the room when the humidifier has vaporized $2 / 3$ of its water supply? 0.254 atm
5) 20.0 g each of helium and an unknown diatomic gas are combined in a $1500 . \mathrm{mL}$ container. If the temperature is 298 K , and the pressure inside is 86.11 atm , what is the unknown gas? $\underline{\mathrm{Cl}}_{2}$
